

5.5V Low Loss Power Distribution Switch

Features

- Input voltage: 2.7V to 5.5V
- Typical 135mΩ on-resistance
- Output discharge resistance of 600ohm
- Under voltage lockout
- Over current protection, short circuit protection and over temperature protection
- Fault time 5ms typically with blanking
- Reverse blocking (no body diode)
- No reverse current when power ON or power OFF
- Compact SOT23 packages

Applications

- USB Ports/Hubs
- Digital TV
- Set-Top Boxes
- VOIP Phones

Typical Application

Descriptions

The DIO7231B power distribution switch is intended for applications where precision current limiting is required or heavy capacitive loads and short circuits are encountered. The power switch rising and falling times are controlled to minimize current surges during turning on/off.

The DIO7231B provide 150mA current level.

The DIO7231B device limits the output current under a safe level by using a constant current mode when the output load exceeds the current limit threshold.

The DIO7231B is available in the SOT23 package. It is rated over the -40°C to 85°C temperature range.

Ordering Information

Order Part Number	Top Marking		Package	
DIO7231BST3	W31B	Green	SOT23	Tape & Reel, 3000

Pin Assignments

Figure 1 Pin Assignment

Pin Description

Pin Name	Pin Description
OUT	Output pin, decoupled with a 0.1µF capacitor to GND
GND	Ground pin
IN	Input pin, decoupled with a 0.1µF capacitor to GND

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Param	neter	Rating	Unit
All pins		-0.3 to 6	V
Package Thermal Resistance	θ _{JA} , SOT23	215	°C/W
Junction Temperature Range	tion Temperature Range		°C
Lead Temperature (Soldering, 10 sec		260	°C
Storage Temperature Range (T _{STG})		-65 to 150	°C
ESD Susceptibility	HBM (Human Body Mode)	6	kV
	CDM (Charged Device Mode)	2	ΝV

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

Parameter	Rating	Unit	
IN		2.7 to 5.5	V
All other pins		0 to 5.5	V
Junction Temperature Range		-40 to 125	°C
Ambient Temperature Range		-40 to 85	°C

Electrical Characteristics

 $T_A=25^{\circ}C V_{IN} = 5V$, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage Range		2.7		5.5	V
Ι _Q	Quiescent Supply Current	Open load, IC Disabled		100	150	μA
R _{DS(ON)}	FET R _{ON}	I _{OUT} =100mA		135	176	mΩ
V _{IN_UVLO}	IN UVLO Threshold				2.5	V
V _{IN_HYS}	IN UVLO Hysteresis			240	400	mV
I _{LIM}	Current Limit		150	250	500	mA
l _{os}	Short Current Limit				500	mA
T _{ON}	Turn-on Time	R _L =50Ω, C _{OUT} =1μF		400		μs
T _{OFF}	Turn-off Time	R _L =50Ω, C _{OUT} =1μF		100		μs
T _{SD}	Thermal Shut down Temperature			140		°C
	Thermal Shut down Hysteresis			20		°C

www.dioo.com

Block Diagram

Application Information

Power Supply Considerations

A 0.1μ F ceramic capacitor from V_{IN} to GND to prevent the input voltage from dropping during the hot-plug condition is strongly recommended. However higher capacitance could help reduce the voltage drop. Further more, bypassing the input with a 0.1μ F ceramic capacitor improves the immunity of the device to short-circuit transients, because an output short will cause ringing on the input without the input capacitor. It could destroy the internal circuitry when the input transient voltage exceeds the absolute maximum supply voltage even for a short duration.

Under Voltage Lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2.4V, a control signal turns off the power switch.

Over-Current Protection

The DIO7231B responds to over current conditions by limiting output current to the I_{LIM} level. When an over current condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shut down occurs only if the fault is present long enough to activate thermal limit.

Two possible overload conditions can occur. In the first condition, an excessive load occurs while the device is enabled. When the excessive load occurs, very high currents may flow for a short time before the current limit circuit can react. After the current limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant current mode to limit the current close to I_{LIM}.

In the second condition, the load is gradually increasing beyond the recommended operating current. The current is permitted to rise until the currentlimit threshold (I_{LIM}) is reached or until the thermal limit of the device is exceeded. The DIO7231B is capable of delivering current up to the current limit threshold (I_{LIM}) without damaging the device. Once the threshold has been reached, the device switches into its constant current mode.

Thermal Protection

Thermal protection prevents damage to the IC when heavy overload or short circuit conditions are present for

extended periods of time. The conditions force the DIO7231B into constant current mode, and under short circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues cycle in this way until the overload or input power is removed.

Typical Performance Characteristics

www.dioo.com

© 2018 DIOO MICROCIRCUITS CO., LTD DIO7231B• Rev 1.3

www.dioo.com

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http://www.dioo.com for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.