

Ultra-Small, Low-Input Voltage, Low ron Load Switch

Features

- Low-Input Voltage: 1.0V to 5.5V
- Ultra-Low ON-State Resistance
 - r_{ON} =45m Ω at V_{IN}=5.0V
 - r_{ON} =52m Ω at V_{IN}=3.6V
 - r_{ON} =64m Ω at V_{IN}=2.5V
 - r_{ON} =83m Ω at V_{IN}=1.8V
 - r_{ON} =151m Ω at V_{IN}=1.2V
 - r_{ON} =190m Ω at V_{IN}=1.1V
- 500mA Maximum Continuous Switch Current
- Ultra-Low Quiescent Current: 72nA at 1.8V
- Ultra-Low Shutdown Current: 41nA at 1.8V
- Low Control Input Thresholds Enable Use of 1.2V/1.8V/2.5V/3.3V/5V Logic
- Controlled Slew Rate to Avoid Inrush Current: 244µs t_r
- Four-Terminal Wafer-Chip-Scale Package (WLCSP-4)
 - 0.9mm x 0.9mm, 0.5mm Pitch, 0.5mm Height

Descriptions

DIO7296 device is an ultra-small, low ON-state resistance (Ron) load switch with controlled turn on. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0V to 5.5V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low voltage control signals. A 120 Ω on chip load resistor is added for output quick discharge when the switch is turned off. DIO7296 is available in a space saving 4 terminal WLCSP-4 with 0.5mm pitch (YZV). The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

Applications

- Personal Digital Assistants (PDAs)
- Cellular Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports
- Portable Instrumentation
- RF Modules

Typical Application

Ordering Information

Order Part Number	Top Marking		T _A		Package
DIO7296WL4	W76	Green	-40 to 85°C	WLCSP-4	Tape & Reel, 3000

Pin Assignment

Pin Descriptions

Name	NO.	Description
V _{OUT}	A1	Switch output
V _{IN}	A2	Switch input, bypass this input with a ceramic capacitor to ground
GND	B1	Ground
ON	B2	Switch control input, active high

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	Parameter	Rating	Unit
V _{IN}	Input voltage	-0.3 to 6	V
V _{OUT}	Output voltage	V _{IN} +0.3	V
V _{ON}	Input voltage	-0.3 to 6	V
P _D	Power dissipation at T _A =25°C	0.48	W
I _{MAX}	Maximum continuous switch current	500	mA
T _A	Operating free air temperature range	-40 to 85	°C
T _{lead}	Maximum lead temperature (10s soldering time)	300	°C
T _{stg}	Storage temperature	-45 to 145	°C
θ _{JA}	Thermal Resistance	189.1	°C/W
ESD	HBM: All Pins	±4000	V
Latch up		±400	mA

Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not Recommend exceeding them or designing to Absolute Maximum Ratings.

	Parameter	Rating	Unit
V _{IN}	Input voltage range	1.0 to 5.5	V
V _{OUT}	Output voltage range	V _{IN}	V
V _{IH}	High level input voltage, ON	0.85 to 5.5	V
V _{IL}	Low level input voltage, ON	0.4	V
C _{IN}	Input capacitor	1	μF

Electrical Characteristics

 $V_{\text{IN}}\text{=}1.0\text{V}$ to 5.5V, $T_{\text{A}}\text{=}\text{-}40^{\circ}\text{C}$ to 85°C, unless otherwise specified.

Symbol	Parameter	Condit	tions	TA	Min.	Тур.	Max.	Unit	
			V _{IN} =1.1V	Full		30		-	
			V _{IN} =1.2V	Full		37			
I _{IN}	Quiescent current	I _{OUT} =0, V _{IN} =V _{ON}	V _{IN} =1.8V	Full		72		nA	
		VIN-VON	V _{IN} =3.6V	Full		178			
			V _{IN} =5.0V	Full		260			
			V _{IN} =1.1V	Full		20			
			V _{IN} =1.2V	Full		22			
I _{IN(OFF)}	OFF-state supply current	V _{ON} =GND, OUT=Open	V _{IN} =1.8V	Full		41		nA	
		OUT-Open	V _{IN} =3.6V	Full		101		1	
			V _{IN} =5.0V	Full		161			
			V _{IN} =1.1V	Full		20		_	
			V _{IN} =1.2V	Full		22			
I _{IN(LEAKAGE)} OFF-state switch current	V _{ON} =GND, V _{OUT} =0	V _{IN} =1.8V	Full		40		nA		
		V001-V	V _{IN} =3.6V	Full		101		-	
			V _{IN} =5.0V	Full		162			
				25°C		45			
				V _{IN} =5.0V	Full			58	
				25°C		52			
			V _{IN} =3.6V	Full			67		
				25°C		64			
			V _{IN} =2.5V	Full			83		
R _{ON}	ON-state resistance	I _{OUT} =-200mA		25°C		83		mΩ	
			V _{IN} =1.8V	Full			108		
				25°C		151		1	
			V _{IN} =1.2V	Full			201		
		v		25°C		190			
			V _{IN} =1.1V	Full			247		
R _{PD}	Output pulldown resistance	V _{IN} =3.3V, V _{ON} = I _{OUT} =30mA	0,	25°C		92	120	Ω	
I _{ON}	ON input leakage current	V _{ON} =1.0V to 5.	5V or GND	Full			48	nA	

Specifications subject to change without notice.

Switching Characteristics

 $R_{L_CHIP}\text{=}120\Omega,\,T_{A}\text{=}25^{\circ}\text{C},\,\text{unless otherwise specified}.$

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _{IN} =1.1V							
			C∟=0.1µF		828		
t _{ON}	Turn on time	R _L =500Ω	C _L =1µF		924		μs
			C∟=3.3µF		1016		
			C _L =0.1µF		20		
t _{OFF}	Turn off time	$R_L=500\Omega$	C∟=1µF		124		μs
			C∟=3.3µF		404		
			C _L =0.1µF		402		
t _r	V _{OUT} rise time	RL=500Ω	C∟=1µF		380		μs
			C _L =3.3µF		392		
			C∟=0.1µF		29		
t _f	V _{OUT} fall time	R _L =500Ω	C∟=1µF		316		μs
			C _L =3.3µF		1024		
V _{IN} =1.2V							
			C _L =0.1µF		746		
t _{on}	Turn on time	R _L =500Ω	C _L =1µF		840		μs
			C _L =3.3µF		920		
			C _L =0.1µF		16		
t _{OFF}	Turn off time	R _L =500Ω	C _L =1µF		94		μs
			C∟=3.3µF		360		
			$C_L=0.1\mu F$		334		
tr	V_{OUT} rise time	RL=500Ω	C∟=1µF		348		μs
			C _L =3.3µF		364		
			C _L =0.1µF		21		
t _f	V_{OUT} fall time	R _L =500Ω	C _L =1µF		258		μs
			C _L =3.3µF		696		
V _{IN} =1.8V							
			C _L =0.1µF		492		
t _{on}	Turn on time	RL=500Ω	C∟=1µF		544		μs
			C _L =3.3µF		604		
			C∟=0.1µF		10		
t _{OFF}	Turn off time	RL=500Ω	C∟=1µF		60		μs
			C∟=3.3µF		212		

			_		
			C∟=0.1µF	244	
tr	V _{OUT} rise time	R _L =500Ω	C _L =1µF	232	μs
			C _L =3.3µF	240	
			C _L =0.1µF	19	
t _f	V _{OUT} fall time	R _L =500Ω	C _L =1µF	216	μs
			C _L =3.3µF	740	
V _{IN} =2.5V					•
			C _L =0.1µF	362	
t _{on}	Turn on time	R _L =500Ω	C∟=1µF	406	μs
			C _L =3.3µF	440	
			C _L =0.1µF	9	
t _{OFF}	Turn off time	R _L =500Ω	C∟=1µF	60	μs
			C _L =3.3µF	180	
			C _L =0.1µF	194	
tr	V _{OUT} rise time	R _L =500Ω	C _L =1µF	194	μs
			C _L =3.3µF	136	
			C _L =0.1µF	18	
t _f	V _{OUT} fall time	R _L =500Ω	C _L =1µF	208	μs
			C _L =3.3µF	676	
V _{IN} =3.0V					
			C _L =0.1µF	302	
t _{on}	Turn on time	R _L =500Ω	C _L =1µF	342	μs
			C _L =3.3µF	374	
			C _L =0.1µF	9	
t _{OFF}	Turn off time	R _L =500Ω	C _L =1µF	58	μs
			C _L =3.3µF	172	
			C _L =0.1µF	174	
tr	V_{OUT} rise time	$R_L=500\Omega$	C _L =1µF	168	μs
			C _L =3.3µF	180	
			CL=0.1µF	18	
t _f	V _{OUT} fall time	$R_L=500\Omega$	C _L =1µF	211	μs
			C _L =3.3µF	684	
V _{IN} =3.6V					
			C∟=0.1µF	257	
t _{on}	Turn on time	$R_L=500\Omega$	C∟=1µF	291	μs
			C∟=3.3µF	324	

			1		
			C∟=0.1µF	8	
t _{OFF}	Turn off time	$R_L=500\Omega$	$C_L=1\mu F$	54	μs
			C∟=3.3µF	160	
			C _L =0.1µF	158	
tr	V _{OUT} rise time	RL=500Ω	C∟=1µF	156	μs
			C _L =3.3µF	160	
			C _L =0.1µF	18	
t _f	V _{OUT} fall time	R _L =500Ω	C∟=1µF	199	μs
			C∟=3.3µF	680	
V _{IN} =5.0V					
			C _L =0.1µF	193	
t _{on}	Turn on time	RL=500Ω	C∟=1µF	229	μs
			C _L =3.3µF	235	
			C∟=0.1µF	8	
t _{OFF}	Turn off time	R _L =500Ω	C∟=1µF	49	μs
			C∟=3.3µF	146	
			C _L =0.1µF	139	
tr	V _{OUT} rise time	R _L =500Ω	C∟=1µF	135	μs
			C∟=3.3µF	 143	
			C∟=0.1µF	 17	
t _f	V _{OUT} fall time	R _L =500Ω	C∟=1µF	185	μs
			C _L =3.3µF	625	

Specifications subject to change without notice.

Detailed Description

Overview

DIO7296 is a low ON-state resistance (r_{ON}) load switch with controlled turnon. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0V to 5.5V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. A 120 Ω on-chip load resistor is added for output quick discharge when the switch is turned off.

Functional Block Diagram

Feature Description

ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state so long as there is no fault. ON is active HI and has a low threshold making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2V, 1.8V, 2.5V, 3.3V or 5.0V GPIOs.

Device Functional Modes

Table 1 lists the functional modes of the DIO7296.

Table 1. Function Table

ON (Control Input)	V _{IN} to V _{OUT}	Vout to GND
L	OFF	ON
Н	ON	OFF

Application and Implementation

Application Information

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1µF ceramic capacitor, C_{IN} , place close to the pins is usually sufficient. Higher values of C_{IN} can be use to further reduce the voltage drop during high current application. When switching heavy loads, it is recommended to have an input capacitor approximately 10 times higher than the output capacitor to avoid excessive voltage drop.

Output Capacitor

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

Typical Application

A. Switched mode power supply

Figure 3. Powering a Downstream Module

Design Requirements

Table 2 lists the design parameters for the DIO7296 device.

Table 2. Design Parameters

Design Parameter	Example Value
V _{IN}	1.8V
Load Current	0.3A
Ambient Temperature	25°C

Detailed Design Procedure

VIN to VOUT Voltage Drop

The voltage drop from V_{IN} to V_{OUT} is determined by the ON-resistance of the device and the load current. The r_{ON} can be found in Electrical Characteristics and is dependent on temperature. When the value of r_{ON} is found, Equation 1 can be used to calculate the voltage drop across the device:

 $\Delta V = I LOAD \times rON$

Where

- △V= Voltage drop across the device
- ILOAD= Load current
- ron= ON-resistance of the device

At VIN=1.8V, the DIO7296 has a r_{ON} value of $83m\Omega$. Using this value and the defined load current, the above equation can be evaluated:

 $\Delta V = 0.30 A \times 83 m \Omega$

(2)

(1)

Where

● △V= 24.9mV

Therefore, the voltage drop across the device will be 24.9mV.

Power Supply Recommendations

The device is designed to operate with a V_{IN} range of 1.0V to 5.5V. This supply must be well regulated and placed as close to the device terminals as possible. It must also be able to withstand all transient and load currents, using a recommended input capacitance of 1µF if necessary. If the supply is more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10µF may be sufficient.

Layout

Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short circuit operation. Using wide traces for V_{IN}, V_{OUT}, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Figure 4. Recommended Board Layout

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <u>http://www.dioo.com</u> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.