

Ultra-Small, Low-Input Voltage, Low ron Load Switch

Features

- Low-Input Voltage: 1.2V to 5.5V
- Ultra-Low ON-State Resistance
 - r_{ON} =36m Ω at V_{IN}=5.0V
 - r_{ON} =38m Ω at V_{IN}=4.2V
 - r_{ON} =39m Ω at V_{IN}=3.6V
 - r_{ON} =46m Ω at V_{IN}=2.5V
 - r_{ON} =58m Ω at V_{IN}=1.8V
 - r_{ON} =150m Ω at V_{IN}=1.2V
- DC Current Up to 2A
- Ultra-Low Quiescent Current: 67nA at 1.8V
- Ultra-Low Shutdown Current: 36nA at 1.8V
- Low Control Input Thresholds Enable Use of 1.2V/1.8V/3.6V/4.2V/5.0V Logic
- Controlled Slew Rate to Avoid Inrush Current
- Package: WLCSP-4 (0.9mm x 0.9mm, 0.5mm Pitch, 0.5mm Height)

Descriptions

DIO7299 device is low R_{ON} MOSEFT controlled by external logic pin, allowing optimization of battery life, and portable device autonomy. It includes a P-channel MOSFET that operates over an input voltage range of 1.2V to 5.5V. An on/off input (ON) controls the switch that can interface with low voltage control signals. A 120 Ω on chip load resistor is added for output quick discharge when the switch is turned off. DIO7299 is packaged in WLCSP-4 with 0.5mm pitch. It is characterized for operation over the free-air temperature range of -40°C to 85°C.

Applications

- Cellular Phones
- GPS Devices
- Digital Cameras
- Peripheral Ports
- Portable Instrumentation
- RF Modules
- Personal Digital Assistants (PDAs)
- MP3 Players

Applications

Ordering Information Order Part Number Top Marking Package TA DIO7299WL4 W78 WLCSP-4 Green -40 to 85°C Tape & Reel, 3000 **Marking Definition** W78 78: Product code W: Week code **Pin 1 Identification Pin Assignment** WLCSP-4 В В 00 0 0 A 0 (2 2

Figure 1. Top View & Bottom View

Pin Descriptions

Name	NO.	Description
V _{OUT}	A1	Switch output
V _{IN}	A2	Switch input, bypass this input with a ceramic capacitor to ground
GND	B1	Ground
ON	B2	Switch control input, active high

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Rating	Unit
V _{IN}	Input voltage	-0.3 to 6	V
V _{OUT}	Output voltage	V _{IN} +0.3	V
V _{ON}	Input voltage	-0.3 to 6	V
P _D	Power dissipation at T _A =25°C	0.48	W
I _{MAX}	Maximum continuous switch current	2	А
T _A	Operating free air temperature range	-40 to 85	°C
T _{lead}	Maximum lead temperature (10s soldering time)	300	°C
T _{stg}	Storage temperature	-45 to 145	°C
θ _{JA}	Thermal Resistance	189.1	°C/W
	HBM: All Pins	±4000	
ESD	CDM	±2000	V
	MM	±200	
Latch up		±400	mA

Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not Recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Rating	Unit
V _{IN}	Input voltage range	1.2 to 5.5	V
V _{OUT}	Output voltage range	V _{IN}	V
V _{IH}	High level input voltage, ON	0.95 to 5.5	V
V _{IL}	Low level input voltage, ON	0.4	V
C _{IN}	Input capacitor	1	μF

Electrical Characteristics

 V_{IN} =1.2V to 5.5V, T_A = -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condit	ions	T _A	Min.	Тур.	Max.	Unit							
				25°C		31									
			V _{IN} =1.2V	Full			43	1							
				25°C		67		1							
			V _{IN} =1.8V	Full			85								
	Quippont current	I _{ОUT} =0,		25°C		176		_ ^^							
l _{in}	Quiescent current	V _{IN} =V _{ON}	V _{IN} =3.6V	Full			212	nA							
				25°C		210		1							
			V _{IN} =4.2V	Full			255								
				25°C		260									
			V _{IN} =5.0V	Full			314								
				25°C		18									
			V _{IN} =1.2V	Full			216								
				25°C		36		1							
			V _{IN} =1.8V	Full			306	1							
I _{IN(OFF)}	OFF-state supply current	V _{ON} =GND, OUT=Open V _{IN} =3.6V V _{IN} =4.2V V _{IN} =5.0V	V _{IN} =3.6V	25°C		92		- nA							
				Full			700								
			V _{IN} =4.2V	25°C		110									
				Full			800								
				25°C		145									
			Full			1000	1								
		V _{ON} =GND,		25°C		18									
						l				V _{IN} =1.2V	Full			211	
			V _{IN} =1.8V	25°C		35									
	OFF-state switch current			Full			306								
				25°C		92		nA							
I _{IN(LEAKAGE)}		V _{OUT} =0		Full			700								
				25°C		110									
			VIN-4.2V	Full			800								
			V _{IN} =5.0V	25°C		145		-							
			VIN-0.0V	Full			1000								
			V _{IN} =5.0V	25°C		36									
Ron			V IIN-0.0V	Full			48	mΩ							
			V _{IN} =4.2V	25°C		38									
	ON-state resistance	lour=-200m∆	- 114 1.2 4	Full			51								
		I _{OUT} =-200mA	V _{IN} =3.6V	25°C		39									
				Full			55								
			V _{IN} =2.5V	25°C		46									
			VIN-2.0V	Full			65								

			N 4.0V	25°C	58		
			V _{IN} =1.8V	Full		78	
			<u>)</u> (−1 2)(25°C	150		
			V _{IN} =1.2V	Full		220	
R _{PD}	Output pull down resistance	V _{IN} =3.3V, V _{ON} =0 I _{OUT} =30mA	0,	25°C	95	120	Ω
I _{ON}	ON input leakage current	V _{ON} =1.2V to 5.5	5V or GND	Full		48	nA

Specifications subject to change without notice.

Switching Characteristics

 $R_{L_CHIP}{=}120\Omega,\,T_{A}$ = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _{IN} =1.2V							
			C _L =0.1µF		655		
t _{on}	Turn on time	R∟=500Ω	C∟=1µF		710		μs
			C _L =3.3µF		782		
			C _L =0.1µF		17		
t _{OFF}	t _{OFF} Turnoff time	R _L =500Ω	C∟=1µF		93		μs
			C∟=3.3µF		281		
			C _L =0.1µF		489		
tr	V _{OUT} rise time	R _L =500Ω	C∟=1µF		473		μs
			C _L =3.3µF		519		
			C _L =0.1µF		28		
t _f	V _{OUT} fall time	RL=500Ω	C∟=1µF		261		μs
			C _L =3.3µF		992		
V _{IN} =1.8V							
		RL=500Ω	C _L =0.1µF		420		μs
t _{on}	Turn on time		C∟=1µF		454		
			C _L =3.3µF		495		
			C _L =0.1µF		11		μs
t _{OFF}	Turnoff time	R _L =500Ω	$C_L=1\mu F$		67		
			C∟=3.3µF		175		
			C _L =0.1µF		339		
tr	V_{OUT} rise time	R _L =500Ω	C _L =1µF		331		μs
			C _L =3.3µF		347		
t _f	V_{OUT} fall time	R _L =500Ω	C _L =0.1µF		23		μs

r		r					
			C∟=1µF		225		
			C _L =3.3µF		757		
V _{IN} =2.5V							
			C _L =0.1µF		317		
t _{ON}	Turn on time	RL=500Ω	C∟=1µF		341		μs
			C _L =3.3µF		366		
			C _L =0.1µF		10		
t _{OFF}	Turnoff time	R _L =500Ω	C∟=1µF		61		μs
			C∟=3.3µF		141		
			C _L =0.1µF		279		
tr	V _{OUT} rise time	R _L =500Ω	C _L =1µF		269		μs
			C _L =3.3µF		274		
			C _L =0.1µF		23		
t _f	V _{OUT} fall time	R _L =500Ω	C∟=1µF		228		μs
			C _L =3.3µF		649		
V _{IN} =3.0V	V _{IN} =3.0V						
			C _L =0.1µF		275		
t _{ON}	Turn on time	R _L =500Ω	C _L =1µF		293		μs
			C∟=3.3µF		314]
			C _L =0.1µF		9		
t _{OFF}	Turnoff time	R _L =500Ω	C _L =1µF		61		μs
			C _L =3.3µF		120		
			C _L =0.1µF		258		
tr	V _{OUT} rise time	R _L =500Ω	C _L =1µF		254		μs
			C _L =3.3µF		252		1
			C _L =0.1µF		22		
t _f	V _{OUT} fall time	R _L =500Ω	C∟=1µF		224		μs
			C _L =3.3µF		636		
V _{IN} =3.6V							·
			C _L =0.1µF		245		
t _{on}	Turn on time	R _L =500Ω	C _L =1µF		257		μs
			C _L =3.3µF		276		
			C _L =0.1µF		9		
t _{OFF}	Turn off time	R _L =500Ω	C∟=1µF		58		μs
			C _L =3.3µF		104		1
tr	V _{OUT} rise time	R _L =500Ω	C _L =0.1µF		241		μs
· · · · · · · · · · · · · · · · · · ·							

5107200					
			C∟=1µF	238	
			С _L =3.3µF	233	
			C _L =0.1µF	22	
t _f	V _{OUT} fall time	R _L =500Ω	C _L =1µF	221	μs
			C _L =3.3µF	593	
V _{IN} =4.2V					I
			C _L =0.1µF	230	
t _{on}	Turn on time	R _L =500Ω	C _L =1µF	242	μs
			C _L =3.3µF	250	
			C _L =0.1µF	9	
t _{OFF}	Turn off time	R _L =500Ω	C _L =1µF	59	μs
			С _L =3.3µF	89	
			C _L =0.1μF	230	
tr	V _{OUT} rise time	R∟=500Ω	C _L =1µF	222	μs
			С _L =3.3µF	218	
			C _L =0.1µF	22	
t _f	V _{OUT} fall time	R _L =500Ω	C _L =1µF	221	μs
			C _L =3.3μF	525	
V _{IN} =5.0V					
			$C_L=0.1\mu F$	203	
t _{on}	Turn on time	R _L =500Ω	C∟=1µF	213	μs
			С _L =3.3µF	220	
			C _L =0.1µF	8	
t _{OFF}	Turn off time	R _L =500Ω	C _L =1µF	50	μs
			C _L =3.3µF	73	
			C∟=0.1µF	220	
tr	V _{OUT} rise time	R _L =500Ω	C _L =1µF	216	μs
			C _L =3.3µF	207	
			C _L =0.1µF	21	
t _f	V_{OUT} fall time	R _L =500Ω	C∟=1µF	213	μs
			C∟=3.3µF	489	

Specifications subject to change without notice.

DIO7299 Typical Performance Characteristics lin(on) vs. Vin lin(leakage) vs. Vin (Von=0, OUT=0) (Von=Vin, lout=0) 200 150 150 lin (leakage) (nA) (An) 100 (**uo**) 100 ⊑ 50 50 lin (on) lin (leakage) 0 ∟ 0 0 L 0 2 3 1 2 3 1 4 Δ Vin (V) Vin (V) lin(off) vs. Vin Ron vs. Temperature (Von=0, OUT=Open) (Load Current=200mA) 150 150 120 100 (h) (nA) (inA) Ron (mΩ) 90 50 60 Vin=1.1V Vin=1.2V Vin=1.8V Vin=2.5V -lin (off) 0 L 0 Vin=3.6V 30 2 3 -40 -20 0 20 40 60 80 100 1 Vin (V) TEMP (℃)

Detailed Description

Overview

DIO7299 is a low ON-state resistance (r_{ON}) load switch with controlled turn on. It contains a P-channel MOSFET and can be turned on with a range of battery from 1.2V to 5.5V. An on/off input (ON) controls the switch, which can interface with low-voltage control signals. A 120 Ω on-chip load resistor is added for output quick discharge when the switch is turned off.

Functional Block Diagram

Feature Description

ON/OFF Control

The state of the switch is controlled by the ON pin. When there is no fault, activating ON can let the switch to be in the on state. ON is active HI and has a low threshold making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2V, 1.8V, 2.5V, 3.3V GPIOs.

Device Functional Modes

Table 1 lists the functional modes of the DIO7299.

Table 1. Function Table

ON (Control Input)	V _{IN} to V _{OUT}	V _{OUT} to GND
L	OFF	ON
Н	ON	OFF

Application and Implementation

Application Information

Input Capacitor

When the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND to limit the voltage drop on the input supply caused by transient in-rush currents. A 1µF ceramic capacitor, C_{IN} , place close to the pins is usually sufficient. C_{IN} 's higher values can be used to further reduce the voltage drop during high current application. It is recommended to have an input capacitor approximately 10 times higher than the output capacitor to avoid excessive voltage drop when switching heavy loads.

Output Capacitor

A C_{IN} greater than C_L is highly recommended when the integral body diode in the PMOS switch. When the system supply is removed, a C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} . This could result in current flow through the body diode from V_{OUT} to V_{IN} .

Typical Application

Note: Switched mode power supply

Figure 3. Powering a Downstream Module

Design Requirements

Table 2 lists the design parameters for the DIO7299 device.

Table 2. Design Parameters

Design Parameter	Example Value
Vin	1.8V
Load Current	0.3A
Ambient Temperature	25°C

Detailed Design Procedure

VIN to VOUT Voltage Drop

The voltage drop from V_{IN} to V_{OUT} is determined by the ON-resistance of the device and the load current. The r_{ON} can be found in Electrical Characteristics and is dependent on temperature. When the value of r_{ON} is found, Equation 1 can be used to calculate the voltage drop across the device:

$$\Delta V = I_{LOAD} \times r_{ON}$$

(1)

(2)

- Where
- $\triangle V =$ Voltage drop across the device
- ILOAD= Load current
- ron= ON-resistance of the device

At V_{IN}=1.8V, the DIO7299 has a r_{ON} value of 58m Ω . Using this value and the defined load current, the above equation can be evaluated:

⊿V= 0.30 A x 58 mΩ

Where,

∆V= 17.4mV

Therefore, the voltage drop across the device will be 17.4mV.

Power Supply Recommendations

The DIO7299 is designed to operate with a V_{IN} range of 1.2V to 5.5V. This supply must be well regulated and placed as close to the device terminals as possible. It must also be able to withstand all transient and load currents, using a recommended input capacitance of 1μ F if necessary. If the supply is more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10μ F may be sufficient.

Layout

Layout Guidelines

All traces should be as short as possible for best performance. To be most effective, the input and output capacitors should be placed close to the DIO7299 to minimize the effects that parasitic trace inductances may have on normal and short circuit operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Layout Example

Figure 4. Recommended Board Layout

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <u>http://www.dioo.com</u> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.